Rationalizing the denominator is a process used to eliminate radicals (like square roots, cube roots, etc.) from the denominator of a fraction. This makes the fraction simpler to work with in many cases. Here's a breakdown of how to do it:
When the Denominator Contains a Single Radical Term:
Example:
To rationalize 1/√2
, you would multiply both numerator and denominator by √2
:
(1/√2) * (√2/√2) = √2/2
When the Denominator Contains a Binomial with a Radical Term:
This usually involves a sum or difference of two terms, where at least one term contains a radical.
a + √b
is a - √b
, and the conjugate of √a - √b
is √a + √b
.(a + b)(a - b) = a² - b²
. This will eliminate the radical in the denominator.Example:
To rationalize 1/(1 + √3)
, you would multiply both numerator and denominator by the conjugate (1 - √3)
:
(1/(1 + √3)) * ((1 - √3)/(1 - √3)) = (1 - √3) / (1 - 3) = (1 - √3) / -2 = (√3 - 1) / 2
Key Concepts and Tips:
(a + b)(a - b) = a² - b²
is very important when rationalizing denominators containing binomials with radicals.By following these steps, you can effectively rationalize the denominator of a fraction and simplify your mathematical expressions.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page